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We report progress in the development of agglomerated multigrid techniques for fully un-
structured grids in three dimensions, building upon two previous studies focused on efficiently
solving a model diffusion equation. We demonstrate a robust fully-coarsened agglomerated
multigrid technique for 3D complex geometries, incorporating the following key developments:
consistent and stable coarse-grid discretizations, a hierarchical agglomeration scheme, and
line-agglomeration/relaxation using prismatic-cell discretizations in the highly-stretched grid
regions. A significant speed-up in computer time over state-of-art single-grid computations is
demonstrated for a model diffusion problem, the Euler equations, and the Reynolds-averaged
Navier-Stokes equations for 3D realistic complex geometries.

I. Introduction

Multigrid techniques [1] are used to accelerate convergence of current Reynolds-Averaged Navier-Stokes
(RANS) solvers for both steady and unsteady flow solutions, particularly for structured-grid applications.
Mavriplis et al. [2, 3, 4, 5] pioneered agglomerated multigrid methods for large-scale unstructured-grid applica-
tions. During the present development, a serious convergence degradation in some of the state-of-the-art multi-
grid algorithms was observed on highly-refined grids. To investigate and overcome the difficulty, we critically
studied agglomerated multigrid techniques [6, 7] for two- and three-dimensional isotropic and highly-stretched
grids and developed quantitative analysis methods and computational techniques to achieve grid-independent
convergence for a model equation representing laminar diffusion in the incompressible limit. It was found in
Ref. [6] that it is essential for grid-independent convergence to use consistent coarse-grid discretizations. In the
later Ref. [7], it was found that the use of prismatic cells and line-agglomeration/relaxation is essential for grid-
independent convergence on fully-coarsened highly-stretched grids. In this paper, we extend and demonstrate
these techniques for inviscid and viscous flows over complex geometries.

The paper is organized as follows. Finite-volume discretizations employed for target grids are described.
Details of the hierarchical agglomeration scheme are described. Elements of the multigrid algorithm are then
described, including discretizations on coarse grids. Multigrid results for complex geometries are shown for a
model diffusion equation, the Euler equations, and the RANS equations. The final section contains conclusions
and recommendations for future work.
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Figure 1. Illustration of a node-centered median-dual control volume
(shaded). Dual faces connect edge midpoints with primal cell centroids.
Numbers 0-4 denote grid nodes.

II. Discretization

The discretization method is a finite-volume discretization (FVD) centered at nodes. It is based on the
integral form of governing equations of interest:∮

Γ

(F · n̂) dΓ =

∫∫
Ω

s dΩ, (1)

where F is a flux tensor, s is a source term, Ω is a control volume with boundary Γ, and n̂ is the outward
unit normal vector. For the model diffusion (Laplace) equation, the boundary conditions are taken as Dirich-
let, i.e., specified from a known exact solution over the computational boundary. Tests are performed for a
constant manufactured solution, U(x, y, z) = 10.0, with a randomly perturbed initial solution. For inviscid
flow problems, the governing equations are the Euler equations. Boundary conditions are a slip-wall condition
and inflow/outflow conditions on open boundaries. For viscous flow problems, the governing equations are the
RANS equations with the Spalart-Allmaras one-equation model [8]. Boundary conditions are non-slip condi-
tion on walls and inflow/outflow conditions on open boundaries. The source term, s, is zero except for the
turbulence-model equation (see Ref. [8]).

The general FVD approach requires partitioning the domain into a set of non-overlapping control volumes
and numerically implementing Equation (1) over each control volume. Node-centered schemes define solution
values at the mesh nodes. In 3D, the primal cells are tetrahedra, prisms, hexahedra, or pyramids. The median-
dual partition [9, 10] used to generate control volumes is illustrated in Figure 1 for 2D. These non-overlapping
control volumes cover the entire computational domain and compose a mesh that is dual to the primal mesh.

The main target discretization of interest for the model diffusion equation and the viscous terms of the
RANS equations is obtained by the Green-Gauss scheme [11, 12], which is a widely-used viscous discretization
for node-centered schemes and is equivalent to a Galerkin finite-element discretization for tetrahedral grids.
For mixed-element cells, edge-based contributions are used to increase the h-ellipticity of the operator [11, 12].
The inviscid terms are discretized by a standard edge-based method with unweighted least-squares gradient
reconstruction and Roe’s approximate Riemann solver [13]. Limiters are not used for the problems considered
in this paper. The convection terms of the turbulence equation are discretized with first-order accuracy.

III. Agglomeration Scheme

As described in the previous papers [6,7], the grids are agglomerated within a topology-preserving framework,
in which hierarchies are assigned based on connections to the computational boundaries. Corners are identified
as grid points with three or more boundary-condition-type closures (or three or more boundary slope disconti-
nuities). Ridges are identified as grid points with two boundary-condition-type closures (or two boundary slope
discontinuities). Valleys are identified as grid points with a single boundary-condition-type closure. Interiors
are identified as grid points without any boundary condition. The agglomerations proceed hierarchically from
seeds within the topologies — first corners, then ridges, then valleys, and finally interiors. Rules are enforced
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Hierarchy of Agglomeration Hierarchy of Added Volume Agglomeration Admissibility

corner any disallowed

ridge interior disallowed

ridge valley disallowed

ridge ridge conditional

valley interior disallowed

valley valley conditional

interior interior allowed

Table 1. Admissible agglomerations.

Figure 2. Trailing-edge area of a 3D wing agglomerated
by the hierarchical scheme. Primal grid is shown by thin
lines; agglomerated grid is shown by thick lines.

Figure 3. Typical implicit line-agglomeration showing
a curved solid body surface on the left and a symme-
try plane on the right. The projection of the line-
agglomerations can be seen on the symmetry plane.

to maintain the boundary condition types of the finer grid within the agglomerated grid. Candidate volumes
to be agglomerated are vetted against the hierarchy of the currently agglomerated volumes. In this work, we
use the rules summarized in Table 1. In order to enable a valid non-degenerate stencil for linear prolongation
and least-squares gradients near boundaries [7], the rules reflect less agglomerations near boundaries than in
the interior. Corners are never agglomerated, ridges are agglomerated only with ridges, and valleys are agglom-
erated only with valleys. A typical boundary agglomeration generated by the above rules is shown in Figure 2.
The conditional entries denote that further inspection of the connectivity of the topology must be considered
before agglomeration is allowed. For example, a ridge can be agglomerated into an existing ridge agglomeration
if the two boundary conditions associated with each ridge are the same. For valleys or interiors, all available
neighbors are collected and then agglomerated one by one in the order of larger number of edge-connections to
a current agglomeration until the maximum threshold of agglomerated nodes (4 for valleys; 8 for interiors) is
reached. The prolongation operator P1 is modified to prolong only from hierarchies equal or above the hierarchy
of the prolonged point. Hierarchies on each agglomerated grid are inherited from the finer grid.

For the results reported in this paper, we employ agglomeration scheme II described in previous papers [6,7].
It has been modified to deal with viscous meshes using implicit-line agglomeration. It performs the agglomeration
in the following sequence:

1. Agglomerate viscous boundaries (bottom of implicit lines).

2. Agglomerate prismatic layers through the implicit lines (implicit-line agglomeration).

3. Agglomerate the rest of the boundaries.
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4. Agglomerate the interior.

The second step is a line-agglomeration step where volumes are agglomerated along implicit lines starting from
the volume directly above the boundary volume. Specifically, we first agglomerate volumes corresponding to
the second and third entries in the implicit-line lists associated with each of the fine-grid volumes contained in
a boundary agglomerate. The line agglomeration continues to the end of the shortest line among the lines asso-
ciated with the boundary agglomerate. This line-agglomeration process preserves the boundary agglomerates.
Figure 3 illustrates typical implicit line-agglomeration near a curved solid body. The implicit line-agglomeration
preserves the line structure of the fine grid on coarse grids, so that line-relaxations can be performed on all grids
to address the grid anisotropy. If no implicit lines are defined, typical for inviscid grids, the first two steps are
skipped.

In each boundary agglomeration (steps 1 and 3), agglomeration begins with corners, creates a front list
defined by collecting volumes adjacent to the agglomerated corners, and proceeds to agglomerate volumes in the
list (while updating the list as agglomeration proceeds) in the order of ridges and valleys. During the process,
a volume is selected from among those in the same hierarchy that has the least number of non-agglomerated
neighbors, thereby reducing the occurrences of agglomerations with small numbers of volumes. A heap data-
structure is utilized to efficiently select such a volume. The agglomeration continues until the front list becomes
empty. Finally, for both valleys and interiors, agglomerations containing only a few volumes (typically one) are
combined with other agglomerations.

Figures 4 and 5 show primal grids and agglomerations for the F6 wing-body combination and the DPW-W2
[14] grids. These grids are viscous grids; the primal grid has prismatic viscous layers around the body and the
wing. Coarsening ratios are indicated by rk (k = 1, 2, 3, 4) in the parenthesis. Line agglomeration was applied
in these regions. Figures 6, 7, and 8 show primal grids and agglomerations for a wing-body combination, a
wing-flap combination, and a 3D wing with a blunt trailing edge — all are pure-tetrahedral inviscid grids.

IV. Single-grid Iterations

Single-grid iteration scheme is based on the implicit formulation:(
Ω

∆τ
+

∂R̂∗

∂U

)
δU = −R̂(U), (2)

where R̂(U) is the target residual computed for the current solution U , ∆τ is a pseudo-time step, ∂R̂∗

∂U is an
exact/approximate Jacobian, and δU is the change to be applied to the solution U . An approximate solution to
Equation (2) is computed by a certain number of iterations on the linear system (linear-sweeps). Update of U
completes one nonlinear iteration. The RANS equations are iterated in a loosely-coupled formulation, updating
the turbulence variables after the mean-flow variables at each nonlinear iteration. The left-hand-side operator
of Equation (2) includes an exact linearization of the viscous (diffusion) terms and a linearization of the inviscid
terms involving first-order contributions only. Thus, the iterations represent a variant of defect correction.
Typically in single-grid FUN3D RANS applications, the first-order Jacobian corresponds to the linearization
of Van Leer’s flux-vector splitting. For inviscid cases, we consider using the linearization of Roe’s approximate
Riemann solver. Jacobians are updated after each iteration. The linear sweeps performed before each nonlinear
update include νp sweeps of the point multi-color Gauss-Seidel relaxation performed through the entire domain
followed by νl line-implicit sweeps in stretched regions. The line-implicit sweeps are applied only when solving
the model diffusion or the RANS equations. In a line-implicit sweep, unknowns associated with each line are
swept simultaneously by inverting a block tridiagonal matrix [7]. For RANS simulations, νp = νl = 15 for the
mean-flow equations and νp = νl = 10 for the turbulence equation. For the model diffusion equation, only one
linear sweep is performed per nonlinear iteration, i.e., νp = νl = 1, and the exact Jacobian computed only once
at the beginning of the entire calculation. In spite of linearity of the model diffusion equation, computations
of R̂(U) in Equation (2) do not employ the exact Jacobian, thus, providing a better similarity to nonlinear
computations.

V. Multigrid

Elements of the multigrid algorithm are presented in this section. In this study, we do not explore various
algorithmic options, relying on the methods that proved effective from the previous studies.
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V.A. Multigrid V-Cycle

The multigrid method is based on the full-approximation scheme (FAS) [1, 15] where a coarse-grid problem is
solved/relaxed for the solution approximation. A correction, computed as the difference between the restricted
fine-grid solution and the coarse-grid solution, is prolonged to the finer grid to update the fine-grid solution. The
two-grid FAS is applied recursively through increasingly coarser grids to define a V-cycle. A V-cycle, denoted
as V (ν1, ν2), uses ν1 relaxations performed at each grid before proceeding to the coarser grid and ν2 relaxations
after coarse-grid correction. On the coarsest grid, relaxations are performed to bring two orders of magnitude
residual reduction or until the maximum number of relaxations, 10, is reached.

V.B. Inter-Grid Operators

The control volumes of each agglomerated grid are found by summing control volumes of a finer grid. An
operator that performs the summation is given by a conservative agglomeration operator, R0, which acts on
fine-grid control volumes and maps them onto the corresponding coarse-grid control-volumes. Any agglomerated
grid can be defined, therefore, in terms of R0 as

Ωc = R0Ω
f , (3)

where superscripts c and f denote entities on coarser and finer grids, respectively. On the agglomerated grids,
the control volumes become geometrically more complex than their primal counterparts and the details of the
control-volume boundaries are not retained. The directed area of a coarse-grid face separating two agglomerated
control volumes, if required, is found by lumping the directed areas of the corresponding finer-grid faces and is
assigned to the virtual edge connecting the centers of the agglomerated control volumes.

Residuals on the fine grid, R̂f , corresponding to the integral equation (1) are restricted to the coarse grid
by the conservative agglomeration operator, R0, as

R̂c = R0R̂
f , (4)

where R̂c denotes the fine-grid residual restricted to the coarse grid.
The fine-grid solution approximation, Uf , is restricted as

U c
0 =

R0(U
fΩf )

Ωc
, (5)

where U c
0 denotes the fine-grid solution approximation restricted to the coarse grid. The restricted approximation

is then used to define the forcing term to the coarse-grid problem as well as to compute the correction, (δU)c:

(δU)c = U c − U c
0 , (6)

where U c is an updated coarse-grid solution obtained directly from the coarse-grid problem.
The correction to the finer grid is prolonged typically through the prolongation operator, P1, that is exact

for linear functions, as
(δU)f = P1(δU)c. (7)

The operator P1 is constructed locally using linear interpolation from a tetrahedra defined on the coarse grid.
The geometrical shape is anchored at the coarser-grid location of the agglomerate that contains the given finer
control volume. Other nearby points are found by the adjacency graph. An enclosing simplex is sought that
avoids prolongation with non-convex weights and, in situations where multiple geometrical shapes are found,
the first one encountered is used. Where no enclosing simplex is found, the simplex with minimal non-convex
weights is used.

V.C. Coarse-Grid Discretizations

For inviscid coarse-grid discretization, a first-order edge-based scheme is employed. For the model equation and
the viscous term in the RANS equations, two classes of coarse-grid discretizations were previously studied [6,
7]: the Average-Least-Squares (Avg-LSQ) and the edge-terms-only (ETO) schemes. The consistent Avg-LSQ
schemes are constructed in two steps: first, LSQ gradients are computed at the control volumes; then, the
average of the control-volume LSQ gradients is used to approximate a gradient at the face, which is augmented
with the edge-based directional contribution to determine the gradient used in the flux. There are two variants
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Inviscid Viscous (Diffusion)

Primal grid Second-order edge-based reconstruction Green-Gauss

Coarse grids First-order edge-based reconstruction Face-Tangent Avg-LSQ

Table 2. Summary of discretizations used to define the residual, R̂.

Inviscid Viscous (Diffusion)

Primal grid Approximate (first-order scheme) Exact (R̂∗ = R̂)

Coarse grids Exact or Approximate Approximate (edge-terms only)

Table 3. Summary of Jacobians, ∂R̂∗
∂U .

of the Avg-LSQ scheme. One uses the average-least-squares gradients in the direction normal to the edge (edge-
normal gradient construction). The other uses the average-least-squares gradients along the face (face-tangent
gradient construction).

The ETO discretizations are obtained from the Avg-LSQ schemes by taking the limit of zero Avg-LSQ
gradients. The ETO schemes are often cited as a thin-layer discretization in the literature [2, 3, 4]; they are
positive schemes but are not consistent (i.e., the discrete solutions do not converge to the exact continuous
solution with consistent grid refinement) unless the grid is orthogonal [13, 16]. As shown in the previous
papers [6, 7], ETO schemes lead to deterioration of the multigrid convergence for refined grids, and therefore
are not considered in this paper. For practical applications, the face-tangent Avg-LSQ scheme was found to be
more robust than the edge-normal Avg-LSQ scheme. It provides superior diagonal dominance in the resulting
discretization [6, 7]. In this study, therefore, we employ the face-tangent Avg-LSQ scheme as a coarse-grid
discretization for the model equation and the viscous term.

For excessively-skewed faces (over 90◦ angle between the outward face normal and the corresponding outward
edge vector), which can arise on agglomerated grids, the gradient is computed by the Avg-LSQ scheme and edge
contributions are ignored. The Galerkin coarse-grid operator [1], which was considered in a previous study, is not
considered here since the method was found to be grid-dependent and slowed down the multigrid convergence
for refined grids [6]. For inviscid discretization, we employ a first-order edge-based discretization on coarse grids.
Table 2 shows a summary of discretizations used.

V.D. Relaxations

Relaxation scheme is similar to the single-grid iteration described in Section IV with the following important
differences. On coarse grids, the Avg-LSQ scheme used for viscous terms has a larger stencil than the Green-
Gauss scheme implemented on the target grid and its exact linearization has not been used; instead relaxation
of the Avg-LSQ scheme relies on an approximate linearization, which consists of edge terms only. For inviscid
cases, the first-order Jacobian is constructed based on Roe’s approximate Riemann solver, and thus it is exact
on coarse grids where the first-order scheme is used for the residual. For RANS cases, the first-order Jacobian is
constructed based on Van Leer’s flux-vector splitting, but the inviscid part of the residual is computed by Roe’s
approximate Riemann solver. Therefore, the Jacobian is approximate on both the primal and coarse grids.
Table 3 summarizes the Jacobians used for inviscid and viscous (diffusion) terms on the primal and coarse
grids. In multigrid nonlinear applications, Jacobians are evaluated at the beginning of a cycle and frozen during
the cycle. For inviscid and RANS flow simulations, significantly fewer linear sweeps are used in a multigrid
relaxation than in a single-grid iteration: νp = νl = 5 for both the mean flow and turbulence relaxations. For
the model diffusion equation, still only one sweep is performed per relaxation.

V.E. Cost of Multigrid V-Cycle

All of the computations in the paper use FAS multigrid. For the linear model diffusion equation, the computer
time would be reduced if the corresponding correction scheme (CS) cycle is used. To estimate relative cost of
multigrid cycles in comparison with single-grid iterations, the cost of nonlinear residual evaluations, relaxation
updates, and Jacobian evaluations needs to be taken into account. Suppose that a nonlinear relaxation and
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Model WMG
SG J σSG σMG

Diffusion 4.5 0 1.16(1, 1) 1.16(1, 1)

Inviscid 1.8 2.0 3.70(15, 0) 1.90(5, 0)

RANS 1.5 3.0 6.12(15, 15):(10, 10) 3.16(5, 5):(5, 5)

Table 4. Summary of costs and typical numbers of linear-sweeps. The multigrid cycle is a 5-level V (2, 1) with a typical
coarsening ratio 8. The numbers in parenthesis denote the number of point and line sweeps, respectively, and the second
set for RANS denotes the number of point and line sweeps of the turbulent equation.

a Jacobian evaluation cost σ and J times a nonlinear residual evaluation, respectively. Then, the cost of a
single-grid iteration relative to the cost of a nonlinear residual evaluation is given by

WSG = σSG + J, (8)

where the superscript SG denotes single-grid iterations. On the other hand, a multigrid cycle involves ν1 + ν2
nonlinear relaxations, a nonlinear residual evaluation before restriction, and a Jacobian evaluation per cycle
per grid. A residual evaluation on coarse grids is also required to form the FAS forcing term. The cost of a
multigrid cycle, MG, relative to the cost of a fine-grid nonlinear residual evaluation is given by

WMG = C
[
(ν1 + ν2)σ

MG + J + 1
]
+ C − 1, (9)

where C is a coarse-grid factor,

C = 1 +
1

r1
+

1

r1r2
+

1

r1r2r3
+ · · · . (10)

Here, rk is the agglomeration ratio of the k-th agglomerated grid. The relative cost, WMG
SG , of a V -cycle is

therefore given by

WMG
SG =

WMG

WSG
. (11)

Table 4 shows values of WMG
SG , σ and J for each equation set within the single-grid iteration and the multigrid

method. The values for σ and J are based on measured computer times associated with residual evaluation,
Jacobian evaluation, and linear-sweeps on the primal grid for particular configurations. The corresponding
values on a per node basis vary from the tabulated values on the coarser grids and across configurations. Thus,
Equation (11) serves as a reasonable approximation to the expected code performance. Note that the Jacobian
computation has been ignored for the model diffusion equation. This is because the Jacobian is constant for
the linear problem and therefore it is computed only once and never updated. Observe also that σ is much
smaller in the multigrid cycle than in the single-grid iteration for the nonlinear cases. This saving comes from
much fewer linear-sweeps in the multigrid method. We experimentally found that the multigrid convergence
did not depend heavily on the number of linear-sweeps. Increasing them further does not reduce the number
of cycles for convergence, but it merely increases the CPU time. The numbers of linear-sweeps shown for the
single-grid method are typical numbers considered sufficient for robust computations with a reasonably large
CFL number. The relative cost (11) computed based on the measured σ and J are shown in the third column
of the table. Considering a 5-level V (2, 1) cycle with a coarsening ration of 8, the relative cost is found to be
4.5 for the diffusion equation, 1.8 for the inviscid equation, and 1.5 for the RANS equations.

VI. Results for Complex Geometries

All calculations presented in this paper were performed with a single processor. Parallelization of the
multigrid algorithm is currently underway. The multigrid cycle is a 5-level V (2, 1) for all cases.

VI.A. Model Diffusion Equation

The multigrid method was applied on grids generated for two practical geometries: the F6 wing-body and the
DPW-W2 wing-alone cases [14]. Both grids are tetrahedral, but prisms are used in a highly-stretched viscous
layer near the solid boundary. Pyramidal cells are also present around the transitional region. The multigrid
V (2, 1) cycle is applied and compared with single-grid iterations. The CFL number is set to infinity. For the F6
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Grid Flow Model
Cost of V-cycle Expected Speed-up Actual Speed-up

(WMG
SG ) (Equation (12)) (Using actual CPU time)

F6WB Diffusion 4.7 69.4 62.6

DPW-W2 Diffusion 4.8 24.8 22.4

Wing-Body Inviscid 1.8 5.2 5.2

Wing-Flap Inviscid 1.8 2.0 1.9

NACA15 Wing Inviscid 1.8 2.9 2.8

F6WB RANS 1.6 5.4 5.0

Table 5. Cost of V-cycle relative to a single-grid iteration and speed-up factor. The expected speed-up factors have been
computed with the actual coarsening ratio.

Grid Size (nodes) Inflow Mach number Angle of Attack Nramp

Wing-Body 1,012,189 0.3 0◦ 10

Wing-Flap 1,184,650 0.3 2◦ 10

NACA15 Wing 2,039,914 0.3 2◦ 100

Table 6. Summary of grid sizes and parameters for the inviscid cases.

wing-body grid (1,121,301 nodes), the grids and convergence results are shown in Figure 4. The speed-up factor
is 63 in CPU time. A similar result was obtained for the DPW-W2 grid ( 1,893,661 nodes) as shown in Figure
5. The speed-up factor is nearly 22 in this case. The cost of one V -cycle computed according to Equation (11)
with actual coarsening ratios is shown for each case in the fourth column of Table 5. It shows that one V-cycle
costs nearly 4 single-grid iterations. The fifth column is an expected speed-up factor based on the number of
single-grid iterations (NSG), the number of multigrid cycles (NMG), and the factor WMG

SG :

NSG

NMGWMG
SG

. (12)

The last column is the actual speed-up factor computed as a ratio of the total single-grid CPU time to the
total multigrid CPU time. A fairly good agreement can be observed between the expected and actual speed-up
factors.

VI.B. Inviscid Flows

The multigrid method was applied to three inviscid cases: low-speed subsonic flows over a wing-body configu-
ration, a wing-flap configuration, and a NACA15 wing with a blunt trailing edge. Table 6 shows a summary of
grid sizes and parameters. Nramp denotes the number of first iterations/cycles over which the CFL number is
ramped from 10 to 200 for single-grid/multigrid calculations. The multigrid cycle is V (2, 1) for these cases.

Figure 6 shows the grids and convergence results for the wing-body configuration case. As Figure 6(f)
shows, the multigrid converges (to machine zero) 5 times faster in CPU time than the single-grid iterations.
The convergence results for the wing-flap configuration is given in Figure 7(f). It shows that the multigrid
converges (to machine zero) nearly 2 times faster in CPU time than the single-grid iterations. For the NACA15
wing case, the solution does not fully converge in either single-grid or multigrid computations apparently due
to an unsteady behavior near the blunt trailing edge. However, as shown in Figure 8(f), the multigrid drives
the residual more rapidly down to the level of 10−9 than the single-grid iteration.

In all three cases, the ratio of the number of multigrid cycles to the number of single-grid iterations is about
twice the speed-up factor in terms of the CPU time. It implies that the cost of one multigrid V (2, 1) cycle is
close to the cost of two single-grid iterations. These results are in good agreement with the estimates of the cost
of one V-cycle computed according to Equation (11) and shown in the fourth column of Table 5. The estimated
cost of one V -cycle is 1.8 of the single-grid iteration cost for all inviscid cases. The estimated speed-up shown
in the fifth column agrees well with the actual speed-up shown in the last column.
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VI.C. Turbulent Flows (RANS)

We applied the multigrid algorithm to a RANS simulation on the F6 wing-body grid shown in Figure 4. The
inflow Mach number is 0.3, the angle of attack is 1 degree, and the Reynolds number is 2.5 million. For this case,
a prolongation operator that is exact for a constant function is used. The P1 prolongation operator encountered
a difficulty on a boundary for this particular configuration, and it is currently under investigation. The CFL
number is not ramped in this case, but set to 200 for the mean-flow equations and 30 for the turbulence equation.

Convergence results are shown in Figure 9. As can be seen, the multigrid achieved four orders of reduction
in the residual 5 times faster in CPU time than the single-grid iteration. For this case, neither the multigrid
nor single-grid method fully converges seemingly due to a separation near the wing-body junction. Four orders
of magnitude reduction is just about how far a single-grid is run in practice for this particular configuration.
The comparison of the number of cycles with the number of single-grid iterations in the figure implies that the
CPU time for a multigrid V (2, 1) cycle is less than the CPU time for two single-grid iterations. As shown in
Table 5, one multigrid V-cycle actually costs 1.6 single-grid iterations, indicating a good agreement between the
expected and actual speed-up factors.

VII. Concluding Remarks

An agglomerated multigrid algorithm has been applied to inviscid and viscous flows over complex geometries.
A robust fully-coarsened hierarchical agglomeration scheme was described for highly-stretched viscous grids,
incorporating consistent viscous discretization on coarse grids. Results for practical simulations show that
impressive speed-ups can be achieved for realistic flows over complex geometries.

Parallelization of the developed multigrid algorithm is currently underway to expand the applicability of
the developed technique to larger-scale computations and to demonstrate grid-independent convergence of the
developed multigrid algorithm.
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(a) Level 1: primal grid. (b) Level 2: coarse grid (r1 = 6.5).

(c) Level 3: coarse grid (r2 = 6.2). (d) Level 4: coarse grid (r3 = 5.5).

(e) Level 5: coarse grid (r4 = 4.6).
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  Multigrid V(2,1): 57 cycles, 0.67 hours
Single Grid: 18707 iterations, 30.20 hours

(f) Convergence history: residual versus CPU time.

Figure 4. Grids and convergence of the model diffusion equation for the F6 wing-body combination.
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(a) Level 1: primal grid. (b) Level 2: coarse grid (r1 = 6.3).

(c) Level 3: coarse grid (r2 = 5.8). (d) Level 4: coarse grid (r3 = 5.3).

(e) Level 5: coarse grid (r4 = 4.7).
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Multigrid V(2,1): 64 cycles, 1.37 hours
Single Grid: 7569 iterations, 22.06 hours

(f) Convergence history: residual versus CPU time.

Figure 5. Grids and convergence of the model diffusion equation for the DPW-W2 case
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(a) Level 1: primal grid. (b) Level 2: coarse grid (r1 = 7.0).

(c) Level 3: coarse grid (r2 = 6.8). (d) Level 4: coarse grid (r3 = 6.2).

(e) Level 5: coarse grid (r4 = 4.9).

0 50 100 150 200 250
−16

−14

−12

−10

−8

−6

−4

CPU Time (minute)

L
og

10
 ( 

R
es

id
ua

l )

 

 

Multigrid V(2,1): 50 cycles, 43 minutes
Single Grid: 472 relaxations, 222 minutes

(f) Convergence history: residual versus CPU time.

Figure 6. Grids and convergence for the wing-body inviscid case.

13 of 16

American Institute of Aeronautics and Astronautics Paper AIAA 2010-4731



(a) Level 1: primal grid. (b) Level 2: coarse grid (r1 = 5.9).

(c) Level 3: coarse grid (r2 = 5.1). (d) Level 4: coarse grid (r3 = 4.4).

(e) Level 5: coarse grid (r4 = 3.8).
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Multigrid V(2,1): 66 cycles, 67 minutes
Single Grid: 236 relaxations, 127 minutes

(f) Convergence history: residual versus CPU time.

Figure 7. Grids and convergence for the wing-flap inviscid case.
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(a) Level 1: primal grid. (b) Level 2: coarse grid (r1 = 6.3).

(c) Level 3: coarse grid (r2 = 5.6). (d) Level 4: coarse grid (r3 = 4.3).

(e) Level 5: coarse grid (r4 = 3.3).
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Multigrid V(2,1): 23 cycles,  42 minutes
Single Grid: 122 relaxations,  116 minutes

(f) Convergence history: residual versus CPU time.

Figure 8. Grids and convergence for the NACA15-wing inviscid case.
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Multigrid V(2,1): 67 cycles, 3.0 hours
Single−Grid: 590 relaxations, 14.9 hours

Figure 9. Residual versus CPU time for the F6 wing-body case (RANS).
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